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Structured and Unstructured Computations
on the DLR-F4 Wing–Body Con� guration
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The accuracy of the DLR structured and unstructured computational � uid dynamic (CFD) codes in predicting
aircraft forces and moments on a wing–body con� guration at subsonic and transonic speeds is investigated. The
computations form the contribution of the DLR and Airbus Deutschland to the AIAA CFD Drag Prediction
Workshop (DPW) in June 2001.By the use of a combinationof a high-qualitygrid, low levels of arti� cial dissipation,
and an advanced turbulence model, the structured code (FLOWer) was able to predict both qualitatively and
quantitativelythe experimentallymeasured drag, lift, and pitchingmoments.Compared to the structured methods,
the total time for grid andsolutiongenerationis signi� cantly reduced with the unstructured approach.Nevertheless,
in its current implementation, the unstructured code (TAU) was found to be less accurate in predicting forces and
moments for the F4 case, although qualitatively the results were good.

Nomenclature
CD , CL = drag and lift coef� cients
CM , CP = pitching moment and pressure coef� cients
f0 = grid-convergedsolution (Richardson extrapolation)
f1 = solution on � ne grid
f2 = solution on next coarser grid
k2, k4 = second- and fourth-order dissipation coef� cients
Ma = freestream Mach number
MD = drag divergence Mach number
p = theoretical or observed order of accuracy
r = grid re� nement ratio
® = angle of attack
³ = eigenvalue dissipation scaling factor

Introduction

T HIS work comprises the contribution of the DLR and Air-
bus Deutschland GmbH to the AIAA Drag Prediction Work-

shop (DPW) in Anaheim, California, 9–10 June 2001 (URL: http://
ad-www.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/index.html). The test
con� guration is the DLR-F4 wing–body con� guration1 � ying at
subsonic through transonic speeds (Re D 3e6). The focus of the
workshop is drag prediction accuracy using a statistical analysis
of the contributed results for the test cases:
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1) Case 1 is a single point with provided grids at Ma D 0:75 and
CL D 0:5.

2) Case 2 is a drag polar for Ma D 0:75 and ® D ¡3–2 deg (in-
crements of 1 deg) using self-generatedgrids.

3) Cases 3 and 4 are Ma=CL matrices (drag rise curves) with
MachD 0:5 ¡ 0:8 and CL D 0:4, 0.5, and 0.6, again using self-
generated grids.

The computations for the workshop are in fully turbulent mode
and are compared to experimentalresults1 with � xed transition.Ad-
ditional work was carried out to investigate the effect of turbulence
modeling, transition,arti� cial dissipation,differentgrids, and mesh
re� nement. This paper investigates how the more and more pop-
ular unstructured CFD methods involving hybrid grid technology
compare to established structured methods in terms of the level of
accuracy, automation, and performance.

CFD Software
The unstructured TAU2 code, the structured FLOWer3 code

and the structured grid generator MegaCads4 have been devel-
oped primarily by the DLR within the German CFD initiative
MEGAFLOW,5 which is a cooperativeeffort of the DLR, aircraft in-
dustry, and several universities.The software is used extensivelyfor
aerodynamic design and research activities in the aircraft industry
and the DLR.

Structured Grid Generation

The DLR structuredmultiblockgrid (seven blocks) has a C–O–H
topology for high resolution. A number of geometrical modi� ca-
tions compared to the standard F4 geometry are made to simplify
grid generation.The trailing edge of the wing is closed with Bézier
splines from .x=c/ D 90% onward,6 and the fuselageplug is slightly
alteredto allowtheC blockaroundthewing.Itwill be shownthatthis
geometrymodi� cationhas a negligibleeffecton the results.The grid
generation takes advantage of the replay capability of MegaCads.
Important parameters like cell numbers and spacings are controlled
byvariablesthat allowfastmodi� cationsto grids.This is used for the
generation of three computational meshes (3:5e6, 5e6, and 18:7e6
points). Cell numbers and placement are chosen based on experi-
ence gained by Rakowitz7 with the aim of achieving a suf� cient
resolution on all grids. The majority of computations use the 3:5e6
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a) Structured MegaCads grid (every second grid line shown)

b) Hybrid CentaurTMTM grid

Fig. 1 Structured and unstructured DLR grids.

points grid. The � ner grids are used to show the in� uence of mesh
re� nement on the computational results. The cell distribution in the
3:5e6 points mesh is chosen to have at least 20 cells normal to the
wing surface in the boundary layer at all anglesof attackof the polar
in case 2, and the height of the � rst layer is 0.001 mm. The far-� eld
distance is 70 times the reference chord length or eight times the
fuselage length in every direction.Figure 1a shows a cutaway of the
F4 structured multiblock grid.

Structured Flow Solver FLOWer

The FLOWer code solves the three-dimensional compressible
Reynolds-averaged Navier–Stokes (RANS) equations in integral
form. Turbulence is modeled by either algebraic or transport
equation models. Here the Wilcox–k!,8 the k!–linearized alge-
braic stress (LEA),9 and the Spalart–Allmaras10 (SA), or SA with
Edwardsmodi� cation (SAE) (seeRef. 11)modelsareused.The spa-
tial discretizationuses a centralcell-centered� nite volume formula-
tion. Dissipative terms are explicitly added to damp high-frequency
oscillations and to achieve suf� ciently sharp resolution of shock
waves. The dissipative operator comprises second- (k2) and fourth
(k4) order differences scaled by the largest eigenvalue following
Jameson et al.12 and Martinelli and Jameson.13 Some computations
use a small amount of matrix dissipation.14 On smooth meshes,
the scheme is second-order accurate in space. Time integration is
carried out by an explicit hybrid multistage Runge–Kutta scheme.
For steady-state calculations, the integration is accelerated by local
time steppingand implicit residualsmoothing.These techniquesare

embedded in a multigrid algorithm. The code allows two dummy
layersaroundeachblockto maintain second-orderaccuracyin space
at block intersections.

Unstructured Grid Generation

The DLR unstructured hybrid grids are generated using the
CentaurTM software package provided by CentaurSoft. The nom-
inal grid contains 24 prism layers for resolution of the boundary
layer. The initial spacing away from the wall is 0.001 mm, which
is based on obtaining a yC of approximately one. (The reference
chord length is 141.2 mm.) A prismatic stretching factor of 1:4 is
used. An O-topology prismatic grid is used around the wing to in-
clude the � nite thickness trailing edge. The trailing edge is resolved
with four cells in the vertical direction, yielding a grid with a total
of 1:7e6 points (4:6e6 cells). The far � eld is positioned at §130
times the reference chord length, or §15 times the fuselage length
in all directions. Figure 1b depicts the surface and symmetry plane
grid. Numerous variations on the standard grid are generated to
investigate the in� uence of the grid on the numerical results. Fur-
ther details regarding these grids and the results are provided in the
section “Parametric Study.”

Unstructured Flow Solver TAU

The TAU code solves the three-dimensionalcompressibleRANS
equations on hybrid grids. The initial/adapted grid is input into the
preprocessing module, which computes dual grids using an edge-
based data structure (independentof the element types in the hybrid
grid).Coarsegridsfor the multigridalgorithmare constructedrecur-
sively by agglomerating the control volumes at the � ner grid level.
For parallel computation, the dual grids (� ne grid and coarse grid
levels)are partitionedintoa numberof domains,each corresponding
to a processor. The � ow solver is based on a � nite volume scheme
integrating the RANS equations. The � ow variables are stored in
the centers of the dual grid, that is, the vertices of the primary grid.
In this study, the inviscid � uxes are calculatedby employing a cen-
tral method with scalar dissipation. (Standard settings are ³ D 0:5,
k2 D 1

2
, and k4 D 1

64
.) The gradients of the � ow variables are deter-

mined by a Green–Gauss formula.The viscous� uxesare discretized
using central differences.The compressible � ow solver employs an
explicit multistep Runge–Kutta scheme for the discretizationof the
temporal gradients. To accelerate the convergence to steady state,
residual smoothing and a multigrid technique (4w for this study)
are employed. The turbulence model used in this study is the one-
equation SA model.10 The adaptation module allows for local re-
� nement of the hybrid grid based on a sensor derived from the � ow
solution. In this study, the sensor was based on a combination of
the total pressure, total enthalpy, velocity, and density. The adapta-
tion module also allows the redistributionof points in the structured
prismatic/hexahedra sublayers for an improved boundary-layerres-
olution. This adaptation feature was set to obtain a yC spacing of 1
at the wall.

Workshop Results
The computationalresults for the four test cases are compared to

the experimentalresultsobtained in three differentwind tunnels, the
High Speed Wind Tunnel (HST) of the National Aerospace Labo-
ratory (NLR), the ONERA-S2MA wind tunnel of the ONERA, and
the 8 foot Wind Tunnel of the Defence Research Agency (DRA).

Case 1

Case 1 involves computations using grids provided by the work-
shop committee (to be called the DPW grids) for Ma D 0:75 and
CL D 0:5. The structured multiblock DPW grid with 3:2e6 points
has an O topology around the wing. The unstructured DPW tetra-
hedra grid has 1:7e6 points. The unstructured boundary-layer grid
is generated using the advancing-layersmethod,15 which produces
highlystretchedandorderedtetrahedralcellsmarchingin a direction
normal to the surface.This effectivelyproducesan unstructuredgrid
with an O topology around the wing in the boundary-layer region.
The FLOWer computationsuse scalardissipationwith the following
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a) CL(CD )

b) CL(®)

Fig. 2 Provided grids, case 1 (CL = 0.5).

settings: ³ D 0:67, k2 D 1
4
, and k4 D 1

64
. The unusually high value

for ³ is required to obtain a solution with the DPW grid; lower
values lead to solution divergence. This issue is addressed further
in the section “Parametric Study.” For the TAU result, the standard
dissipation settings described in “Unstructured Flow Solver TAU”
are used.

Figure 2a shows FLOWer results using the Wilcox–k! (Ref. 8)
and thek!–LEA turbulencemodelanda TAU computationusingthe
SA model.10 Althoughtwo grids and threedifferent turbulencemod-
els are used the predicted drag levels are almost identical. Note that
� xed transition1 was used in the experiments,whereas the computa-
tions were fully turbulent.Computations investigatingthe in� uence
of transition are presented later in the section “Parametric Study.”

Figure 2b depicts CL.®/. All three computations underpredict
the angle of attack required for CL D 0:5 (0.2 deg). The FLOWer
Wilcox–k! (Ref. 8) (¡0.30 deg) and the TAU SA (Ref. 10)
(¡0.32 deg) results are almost identical, with a slightly better result
coming from the FLOWer k!–LEA calculation (¡0.18 deg). The
same conclusionscan be drawn for the pitchingmoment coef� cient
displayed in Fig. 3a. The result from the k!–LEA computation lies
slightly closer to the experimental results; however, all results are
quite removed from the experiment.

Figure3bdepictsCP .x=c/ at fourspanwisestationson thewing at
CL D 0:5. The agreementwith the experimentsat ´ D 0:185 is good
for all threecomputations.Only the suctionpeakin thecomputations
is too low. When moving toward the outer section of the wing, the
agreementwith experimentgraduallydeclines.At section´ D 0:331
and 0.512, the FLOWer results have a very smearedshock.The TAU
result is not as smeared and has a higher rooftop level, closer to the
experiments,but the shock position is too far forward.At ´ D 0:844,
the FLOWer results show no shock at all. The pressuredistributions
can be summarized as having a pressure level in the recovery region
after the smeared shock that is generally above the experiments,
combined with a lower than measured suction peak. To conclude,
the apparently good correlation of drag to the experiment for all

a) CM (CL)

b) CP (x/c): ´ = i) 0.185, ii) 0.331, iii) 0.512, and iv) 0.844

Fig. 3 Provided grids, case 1 (CL = 0.5).

computations is due to a cancellation of errors, highlighted by the
differences between experiment and calculation for lift, moment,
and the pressure distributions. To investigate the in� uence of the
coupling between grid and solver on these results, self-generated
grids are used for case 2.

Case 2

The best FLOWer and TAU results for the complete range of an-
gles of attack are presented using grids generated in-house at the
DLR. The FLOWer computations use a grid with 3.5e6 points (see
“Structured Grid Generation”) combined with a minimum amount
of arti� cial dissipation (87.5%scalar dissipation,12.5% matrix dis-
sipation,andscalingfactordue to largesteigenvalue³ D 0:2, k2 D 1

4
,

and k4 D 1
64 ) and the k!–LEA turbulence model. The TAU results

use an initial grid containing 1.7e6 points (see “Unstructured Grid
Generation”), which is adapted once at each angle of attack, yield-
ing grids with 2.4e6 points (C40%). In the adaption stage, a yC D 1
adaption of the prismatic grid is also performed. The one-equation
SA10 turbulencemodel is used, combinedwith the standard settings
for arti� cial dissipation (see “Unstructured Flow Solver TAU”).
A detailed parametric study is presented in the following section,
“Parametric Study.”

The fully turbulent FLOWer computations overpredict the mea-
sured drag curve (Fig. 4a) by approximately 20 drag counts. Note
that the inclusion of transition in the calculation reduces the pre-
dicted drag by approximately 14 drag counts (see “In� uence of
Transitionand Mesh”), reducing the drag overpredictionto approx-
imately six drag counts. The results from the unstructured fully
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a) CL(CD )

b) CL(®)

Fig. 4 DLR grids, case 2.

turbulent computations with TAU lie exactly on the experimental
results. However, as is the case for the structured computations, in-
cluding transition reduces the predicted level of drag, in this case
by approximately 10 drag counts.

The calculated lift curves are shown in Fig. 4b. The FLOWer
lift curve matches the experiment very well, even in the nonlin-
ear region above ® D 0:5 deg, with a slight deviation in the region
® D 1:5–2 deg. In comparison, the lift from the TAU calculations
overpredicts that of the experiment by approximately 15% over al-
most the whole range of angles. Figure 5a again shows good agree-
ment between the FLOWer and experimentalresults for the pitching
moment,particularlygiven the experimentalscatterbetween the dif-
ferent wind-tunnel facilities. The changes in slope of the pitching
moment curveare alsocapturedverywell. Suchan agreementis only
possible when the computed pressure distributions agree very well
with the experiment, as can be seen in Fig. 5b. The TAU results,
as can be expected from the pressure distributions, signi� cantly
overpredict the pitching moments, accompanied by less qualitative
agreement in the slope. To summarize, the TAU results for case 2 on
the DLR grid are very similar to those obtained with the DPW grid
for case 1. The signi� cantly improved agreement of the FLOWer
computations with experiment is achieved by using minimal arti-
� cial dissipation (at the cost of robustness, that is, convergence is
slow) and by the generationof a more suitable grid, combined with
an advanced turbulence model.

Case 3 and 4

The results from the drag rise curve calculationsfor cases 3 and 4
are presentedin the form of thedrag divergenceMach number MD at
d.CD/=d(Ma) D 0:1 in Table 1. MD was evaluatedseparatelyfor the
three sets of experimental results using splines and then averaged.
For CL D 0:4, no MD could be evaluated because the calculations

Table 1 Drag divergence Mach numbers

CL MD experiment MD FLOWer MD TAU

0:5 0.784 0:783 (¡0.1%) 0:780 (¡0.5%)
0:6 0.767 0:774 (C0.9%) 0:774 (C0.9%)

a) CM (CL)

b) CP (x/c): ´ = i) 0.185, ii) 0.331, iii) 0.512, and iv) 0.844

Fig. 5 DLR grids, case 2, CL = 0.5.

were only performed up to Ma D 0:8. The experimental drag diver-
gence number at CL D 0:4 was 0.802. The drag divergence Mach
numbers of both TAU and FLOWer are close to the experiment (to
within §1%). For the evaluation of MD , the accuracy of the slope
is crucial. The results from this study suggest that the slope seems
to be relatively insensitive to the grid, solution quality, and the type
of � ow solver.

The drag rise curves from FLOWer and TAU for CL D 0:5 are de-
picted in Fig. 6. Because the drag rise curves are qualitatively very
similar for all three lift coef� cients, the results for the other lift co-
ef� cients are omitted. The results from the TAU computationsagree
qualitatively and quantitatively well with the experimental values.
The FLOWer results overpredict the amount of drag; however, the
slope is very similar between experiment and computations, as is
evident in the good prediction of MD . This offset of the FLOWer
results is due to a higher levelof arti� cial dissipationstemming from
setting ³ to 0:67 (for case 2 a value of 0:2 was used). This higher ³
setting improves the robustnessof the automatic targetCL option of
FLOWer used to obtain these results. Also recall that the inclusion
of transition would reduce the overall level of drag seen in Fig. 6
(lowering the drag rise curves), but would have little or no effect on
the computed drag divergence Mach numbers in Table 1.
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Fig. 6 Drag divergence, CL = 0.5.

Parametric Study
In the preceding section, the best results for both the structured

grid and unstructured grid computations are presented. The cur-
rent section summarizes an extensive parametric study done to
investigate the in� uence of numerous parameters on the compu-
tation results. Included in this study are 1) arti� cial dissipation,
2) the turbulence model, 3) transition and mesh quality, 4) � ow
solver and geometry modi� cations, and 5) mesh re� nement and
grid extrapolation.

In� uence of Arti� cial Dissipation

In Figs. 7a–8b the in� uence of the scaling parameter of the ar-
ti� cial dissipation due to the largest eigenvalue ³ on the TAU and
FLOWer resultson DLR grids is investigated.For the FLOWer com-
putations100% scalar dissipationis used (k2 D 1

4
and k4 D 1

64
) with

the Wilcox–k! turbulence model.8 For TAU the standard settings
(see “Unstructured Flow Solver TAU”) are used. Figure 7a shows
a decrease of approximately 5% in the FLOWer drag polar when ³
is reduced from 0:67 to 0:2. This increase in accuracy causes a de-
crease of robustness; thus, the computation converges more slowly.
The changes in the TAU results obtained from lowering ³ from
0:5 (standard setting) to 0:2 for ® D 1 degree are less pronounced.
The changes in drag (¡0.4%), lift (¡1.4%), and pitching moment
(C3.1%) suggest that the results from the unstructured computa-
tions are much less sensitive to this parameter. The structured DLR
grid has cells at the surface of the geometry with a much higher
aspect ratio than TAU in the spanwise direction. This higher aspect
ratio is re� ected in the directionaleigenvalues,and, hence, the in� u-
ence of the scaling factor ³ on the dissipation is more pronounced.
Figure 7b shows that for lift over angle of attack the impact of ³
on the FLOWer results is much smaller. The in� uence of this pa-
rameter on the pitching moment curves (Fig. 8a) for both solvers is
relativelysmall comparedto thevariationin theexperimentalresults
in the different wind tunnels. Figure 8b shows the C P .x=c/ at four
wing sections for the FLOWer results with the different ³ values
at ® D 0 deg. The impact of a lower ³ on the pressure distributions
is small and increases in outboard direction with a higher rooftop
level, a steepening shock, and an improved pressure recovery after
the shock.

In� uence of Turbulence Modeling in FLOWer

Here, three turbulence models, the Wilcox–k!,8 k!–LEA,9 and
SAE (see Ref. 11) are compared using FLOWer computations on
the DLR 3:5e6 points grid. All parameter settings are the same as
for the FLOWer results for case 2. Only ³ for the SAE computation
is increasedto 0:5 becauseit will be comparedto TAU computations
using ³ D 0:5 later. Because the FLOWer results are sensitive to ³
due to the high aspect ratio cells at the surface, the SAE results in
Figs. 9a–10a are in� uencedmost noticeablyin the drag and moment
curves with parallel shifts. Because the best overall agreement with

a) In� uence of ³ on CL(CD )

b) In� uence of ³ on CL(®)

Fig. 7 DLR grids.

experiment is achieved with the k!–LEA model, the other two sets
of computationsare compared to these results. Figure 9a shows that
the drag polars of the two k! models are on top of each other for
CL of less than 0:5. For higher CL , the Wilcox–k! (Ref. 8) result
diverges slightly and is not parallel to the experiments any more.
The SAE (see Ref. 11) computationshave a parallel offset to higher
drag caused by the higher ³ , and, from Fig. 7a, it can be concluded
that with a value of ³ D 0:2 the SAE and the k!–LEA model results
would be much closer.

Figure 9b shows that the Wilcox–k! (Ref. 8) results have an
almost paralleloffset to higher lift compared to the k!–LEA model.
The SAE (seeRef.11)modelcomputationsagreewellwith k!–LEA
for ® D ¡3–0 deg and then underpredict the lift for higher angles
of attack. Figure 7b shows that for lift over angle of attack, the
in� uence of ³ is negligible. The moment curve for the Wilcox–k!
(Ref. 8) results (Fig. 10a) has a large offset to lower CM . However
the qualitative changes in the slope seen in the experiments have
been well captured. The SAE model (see Ref. 11) compares well to
k!–LEA for CL of less than approximately 0:47 and then diverges
to higher CM , without qualitative agreement of the slope for higher
CL values. Figure 10b shows that the CP distributionsfor ® D 0 deg
of the inner two wing sectionsdiffer mainly in the pressure recovery
region on the upper side of the wing, with the Wilcox–k! model8

producing the highest lift at the same angle of attack. The outer
three sections show a difference in shock position with the shock
position with the SAE (see Ref. 11) model lying slightly forward
of the k!–LEA result and with the Wilcox–k! (Ref. 8) result lying
further rearward.

In� uence of Transition and Mesh

In this section, the in� uence of transition and mesh quality on
the computed results is investigated. Complete polars for case 2
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a) In� uence of ³ on CM (CL)

b) In� uence of³ onCP (x/c): ´ = i) 0.185,ii) 0.331,iii) 0.512,andiv)0.844

Fig. 8 DLR FLOWer grid, ® = 0 deg.

are calculated with FLOWer using both the DPW workshop grid
(3:2e6 nodes) and the DLR grid (3:5e6 nodes). With TAU a single
point on the polar is computed (® D 0) with a hybridDLR mesh with
2:4e6 nodes. In all of the computations, the � xed transition pattern
from the experiments is used.1

Figure 11 depicts the impact of transition on computed drag,
which leads to a reduction in drag of approximately14 drag counts
(or 4%) for the FLOWer computations and 10 drag counts (or 5%)
for TAU. All of the structured FLOWer computations use ³ D 0:67
because the only in� uence of transition being investigated is that
which explains the higher level of drag as compared to the FLOWer
results using the Wilcox–k! model8 presented earlier.

An important result from these calculations is the difference in
drag of approximately 20% between the structured DPW and DLR
grids.The parametersettingsfor the calculationswere the same, and
the grids are of similar sizes. This clearly demonstrates the effect of
mesh quality on drag prediction.

Comparison of FLOWer and TAU and In� uence
of Geometry Modi� cation

The following sets of results stem from investigations into the
cause of the signi� cant differences between the results of the
FLOWer and TAU calculations presented in Figs. 4a–5b. The re-
sults obtained with the structured solver FLOWer are very good
when the in� uence of transition is considered.Even though the ex-

a) CL(CD )

b) CL(®)

Fig. 9 FLOWer on DLR 3:5e6 points grid.

act cause of these differenceshas not been located and is a cause for
ongoing work, the results of the extensive investigationsto date are
in and of themselves interesting and worth noting.

The major differences between the computations (apart from the
solver and grid types) are the turbulence model, arti� cial dissipa-
tion settings, and the geometry modi� cations. With respect to the
turbulencemodel, Figs. 9a–10b, show quite clearly that respectable
results can be obtained using the SA model.10 The FLOWer imple-
mentation uses the SAE (see Ref. 11) TAU, which is (by default)
the original version.A calculationwas performedwith TAU and the
SAE and the differencesbetween the two TAU results are insigni� -
cant (as can be expected).Figures7a–8b show that differentsettings
for the arti� cial dissipation parameters are also not responsible for
the discrepancies between the two codes. Finally, the in� uence of
the geometry modi� cations in the FLOWer grid have been investi-
gated. The modi� ed surface descriptionused by the MegaCads grid
generator, with the closed trailing edge, was read into CentaurTM ,
and two separate hybrid grids were generated. The � rst grid had a
standard O-type prism mesh around the wing (1.3e6 points), and
the second included a wake panel (the same as used by MegaCads)
and, hence, had a C-type mesh around the wing for a better resolu-
tion of the wake � ow behind the wing (1.7e6 points). All other grid
generation parameters (for example, number of prism layers, prism
layer thickness, etc.) were kept the same to minimize differences in
the grid characteristics.

Computations were performed with TAU on both grids, with the
results from the grid with the O-type prism mesh and the closed
trailing edge being presented in Figs. 12a–13b and compared to
the FLOWer SAE (see Ref. 11) results from the section “In� u-
ence of Turbulence Modelling in FLOWer” and the TAU results
with the original blunt trailing-edge grid from case 2. For these
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a) CM (CL)

b) CP (x/c): ´ = i) 0.185, ii) 0.331, iii) 0.512, and iv) 0.844

Fig. 10 FLOWer on DLR 3.5e6 points grid at ® = 0 deg.

comparisons, the adaptation step was omitted from the additional
TAU computations.

In general, it can be concluded that the in� uence of the geometry
modi� cation is negligible, at least when trying to explain the differ-
ences between the TAU results and both the results obtained with
FLOWer and those of the experiments. The results from the grid
with the wake mesh (not shown) also brought no further improve-
ment. The two TAU drag polars in Fig. 12a are almost identical,with
a slight shift at the higher values of CL . The lift over alpha curves
in Fig. 12b for the two TAU results are identical for ® D ¡3–0 deg,
and at higher angles of attack the geometry with the closed trailing
edge produces a negligibly higher lift. The general trend, however,
remains the same: The unstructured computations overpredict the
lift consistently over the whole range of angles of attack. Earlier
results have shown that the pitching moment curve is most sensi-
tive to any differences in computational results. Although there is a
small differencein the pitchingmoments (Fig. 13a) between the two
TAU grids, it can be concluded that, in general, there are insigni� -
cant changes in the computational results for this geometry brought
about by the geometry modi� cations introduced in generating the
block structured DLR grid with MegaCads.

Figure 13b shows the respectivewing pressuredistributionsfrom
the three computations at ® D 0 deg, that is, with a higher CL than
the experiment. This causes an overly optimistic comparison with
experiment;however,the differencesbetweenthe the two TAU com-
putationsand the FLOWer result are of interest.The FLOWer result
shows a more forward shock position in the three outer sections.

Fig. 11 CL(CD) In� uence of transition on FLOWer and TAU results
on DLR and DPW grids.

a) CL(CD )

b) CL(®)

Fig. 12 FLOWer and TAU on DLR grids, ® = 0 deg.

Also, there are differences in the pressure recovery region. The
higher lift at the same angle of attack is clearly visible.

For completeness,a � nal grid modi� cation was tested on the grid
with the O-type prismatic mesh and the closed trailing edge. The
height of the � rst cell away from the wall was reduced down to
0.0005 mm and 30 layerswere generated in the prismatic part of the
mesh (prismatic stretching factor of 1.31) to keep the total height of
the prismatic mesh the same. Again, no signi� cant differenceswere
found in any of the computational results.
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a) CM (CL)

b) CP (x/c): ´ = i) 0.185, ii) 0.331, iii) 0.512, and iv) 0.844

Fig. 13 FLOWer and TAU on DLR grids, ® = 0 deg.

In� uence of Mesh Re� nement and Grid Extrapolation for FLOWer

The in� uence of grid re� nement is demonstrated with FLOWer
computations using the k!–LEA turbulence model and the
parameter settings for minimal arti� cial dissipation on three grids
with 3:5e6, 5e6, and 18:7e6 nodes. Figure 14 includes complete
polars for the two smaller grids and a single point computation
on the 18:7e6 nodes grid showing the results for the � nest level
and the result of the successive next coarser level with 2:3e6
points. These two grid level results are used for a Richardson ex-
trapolation (see Ref. 16) to estimate the grid-independent drag.
The general Richardson extrapolation for the grid-convergedvalue
f0 is

f0
»D f1 C . f1 ¡ f2/=.r p ¡ 1/ (1)

Generally, grid re� nement reduces the drag with a parallel shift
of the polars. The second-level computation of the 18:7e6 points
grid is almost identical to the result on the 3:5e6 nodes grid. The
polar of the 5e6 points grid is shifted noticeably to lower drag,
indicating grid dependence. The result for the 18:7e6 points grid
is shifted by a similar amount to lower drag, indicating reduced
mesh dependence for � ner grids. The � ne grid result is on top of
the ONERA experiments. The black triangle is the extrapolated
value using the theoretical order of accuracy of FLOWer and the
grid re� nement r D 2, which is only slightly shifted to lower drag,
indicatinga high level of grid independenceof the � ne grid solution.
The extrapolationshows that the grid converged solution, including

Fig. 14 CL(CD) FLOWer on DLR grids.

transition, would lie at a noticeably lower drag level compared to
the experiments.

Conclusions
It is possible to achieve accurate CFD results for transonic � ows

using a structured grid solver (FLOWer) on a wing–body con� gu-
ration by the use of a high-quality grid combined with low levels
of arti� cial dissipation and a sophisticated turbulence model (k!–
LEA). If all of theseprerequisitesare set, global forcesandmoments
agree well with the experiments, as well as pressure distributions.
The computational predictions are, however, very grid dependent,
with differences in drag of up to 20% being found for two grids of
similar size (DPW, 3.2e6 points and DLR, 3.5e6 points). It is also
possible, with a grid of lower quality, to achieve a good prediction
for drag, with poor agreement for lift and pitching moment, due
to a cancellation of errors effect. Hence, all three forces should be
considered in assessing the quality of any computational solution.

On the unstructured side (TAU), it has been shown that quali-
tatively good results can be currently achieved. However, for this
con� gurationand � ow� eld, the resultsarequantitativelynot as good
as those of the structuredgrid approach.This is (currently) the price
to be paid for the signi� cant reduction in the total time (grid gen-
eration and solution time) required to obtain a solution for such a
geometry. A comprehensive parameter study investigating the ef-
fect of arti� cial dissipation, transition, grid topology, and geometry
modi� cations has failed to account for the quantitative differences
between the unstructured grid results and both the structured grid
results and the experiments.
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